A new bound on excess frequency noise in second harmonic generation in PPKTP at the 10−19 level

نویسندگان

  • D. Yeaton-Massey
  • R. X. Adhikari
چکیده

We report a bound on the relative frequency fluctuations in nonlinear second harmonic generation. A 1064nm Nd:YAG laser is used to read out the phase of a Mach-Zehnder interferometer while PPKTP, a nonlinear crystal, is placed in each arm to generate second harmonic light. By comparing the arm length difference of the Mach Zehnder as read out by the fundamental 1064 nm light, and its second harmonic at 532 nm, we can bound the excess frequency noise introduced in the harmonic generation process. We report an amplitude spectral density of frequency noise with total RMS frequency deviation of 3mHz and a minimum value of 20 μHz/Hz1/2 over 250 seconds with a measurement bandwidth of 128 Hz, corresponding to an Allan deviation of 10−19 at 20 seconds. © 2012 Optical Society of America OCIS codes: (190.2620) Harmonic generation and mixing; (120.2920) Homodyning; (120.3180) Interferometry. References and links 1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127, 1918–1939 (1962). 2. J. Stenger, H. Schnatz, C. Tamm, and H. R. Telle, “Ultraprecise Measurement of Optical Frequency Ratios,” Phys. Rev. Lett. 88, 073601 (2002). 3. E. J. Zang, J. P. Cao, Y. Li, C. Y. Li, Y. K. Deng, and C. Q. Gao, “Realization of Four-Pass I2 Absorption Cell in 532-nm Optical Frequency Standard,” IEEE transactions on Instrumentation and Measurement 56, 673–676 (2007). 4. G. Grosche, B. Lipphardt, and H. Schnatz, “Optical frequency synthesis and measurement using fibre-based femtosecond lasers,” The European Physical Journal D Atomic, Molecular, Optical and Plasma Physics 48, 27–33 (2008). 5. I. Coddington, W. C. Swann, L. Lorini, J. C. Bergquist, Y. Le Coq, C. W. Oates, Q. Quraishi, K. S. Feder, J. W. Nicholson, P. S. Westbrook, S. A. Diddams, and N. R. Newbury, “Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter,” Nature Photonics 1, 283–287 (2007). 6. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place,” Science 319, 1808–1812 (2008). 7. T. M. Fortier, N. Ashby, J. C. Bergquist, M. J. Delaney, S. A. Diddams, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, K. Kim, F. Levi, L. Lorini, W. H. Oskay, T. E. Parker, J. Shirley, and J. E. Stalnaker, “Precision Atomic Spectroscopy for Improved Limits on Variation of the Fine Structure Constant and Local Position Invariance,” Phys. Rev. Lett. 98, 070801 (2007). 8. LIGO Scientific Collaboration, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Reports on Progress in Physics 72, 076901 (2009). ar X iv :1 20 8. 20 11 v2 [ ph ys ic s. op tic s] 2 3 A ug 2 01 2 9. A. J. Mullavey, B. J. J. Slagmolen, J. Miller, M. Evans, P. Fritschel, D. Sigg, S. J. Waldman, D. A. Shaddock, and D. E. McClelland, “Arm-length stabilisation for interferometric gravitational-wave detectors using frequencydoubled auxiliary lasers,” Optics Express 20, 81–89 (2012). 10. K. Izumi, K. Arai, B. Barr, J. Betzwieser, A. Brooks, K. Dahl, S. Doravari, J. C. Driggers, W. Z. Korth, H. Miao, J. Rollins, S. Vass, D. Yeaton-Massey, R. X. Adhikari, “Multi-wavelength cavity metrology,” arXiv:1205.1257 (2012) 11. F. Khalili, S. Danilishin, H. Müller-Ebhardt, H. Miao, Y. Chen, and C. Zhao, “Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors,” Phys. Rev. D 83, 062003 (2011). 12. B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and J. R. L. Savage, “Spatial and temporal filtering of a 10-w nd:yag laser with a fabry–perot ring-cavity premode cleaner,” Opt. Lett. 23, 1704– 1706 (1998). 13. V. Leonhardt and J. B. Camp, “Space interferometry application of laser frequency stabilization with molecular iodine,” Appl. Opt. 45, 4142–4146 (2006). 14. Y. Levin, “Fluctuation–dissipation theorem for thermo-refractive noise,” Physics Letters A 372, 1941–1944 (2007). 15. D. Heinert, A. G. Gurkovsky, R. Nawrodt, S. P. Vyatchanin, and K. Yamamoto, “Thermorefractive noise of finite-sized cylindrical test masses,” Phys. Rev. D 84, 062001 (2011). 16. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical Frequency Synthesis and Comparison with Uncertainty at the 10−19 Level,” Science 303, 1843–1845 (2004). 17. L. Robertsson, “International comparison of I2-stabilized frequency-doubled Nd:YAG lasers between the BIPM, the NRLM and the BNM-INM,” Metrologia 38 (2001). 18. J. E. Stalnaker, S. A. Diddams, T. M. Fortier, K. Kim, L. Hollberg, J. C. Bergquist, W. M. Itano, M. J. Delany, L. Lorini, W. H. Oskay, T. P. Heavner, S. R. Jefferts, F. Levi, T. E. Parker, and J. Shirley, “Optical-to-microwave frequency comparison with fractional uncertainty of 10−15,” Applied Physics B: Lasers and Optics 89, 167–176 (2007). 19. Rubiola, Phase Noise and Frequency Stability in Oscillators (Cambridge University Press, 2008). 20. I. R. C. Committee, “Characterization of Frequency and Phase Noise,” Report (1986). 21. O. Terra, G. Grosche, K. Predehl, R. Holzwarth, T. Legero, U. Sterr, B. Lipphardt, and H. Schnatz, “Phasecoherent comparison of two optical frequency standards over 146 km using a telecommunication fiber link,” Applied Physics B: Lasers and Optics 97, 541–551 (2009). 10.1007/s00340-009-3653-2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new bound on excess frequency noise in second harmonic generation in PPKTP at the 10⁻¹⁹ level.

We report a bound on the relative frequency fluctuations in nonlinear second harmonic generation. A 1,064 nm Nd:YAG laser is used to read out the phase of a Mach-Zehnder interferometer while PPKTP, a nonlinear crystal, is placed in each arm to generate second harmonic light. By comparing the arm length difference of the Mach Zehnder as read out by the fundamental 1064 nm light, and its second h...

متن کامل

بررسی عملکردهای شناختی دانشجویان در مواجهه با صدا با استفاده از آزمون عملکرد پیوسته

Introduction: In the most industrial environment, workers are exposed to noise everyday. Exposure to this physical hazardous agent can cause immediate as well as delayed adverse effects. Cognitive performance decrement is one of the adverse effects of noise exposure which its main consequences is occupational accidents. This study attempted examine the effect of exposure to different levels of ...

متن کامل

System Identification Based on Frequency Response Noisy Data

In this paper, a new algorithm for system identification based on frequency response is presented. In this method, given a set of magnitudes and phases of the system transfer function in a set of discrete frequencies, a system of linear equations is derived which has a unique and exact solution for the coefficients of the transfer function provided that the data is noise-free and the degrees of...

متن کامل

System Identification Based on Frequency Response Noisy Data

In this paper, a new algorithm for system identification based on frequency response is presented. In this method, given a set of magnitudes and phases of the system transfer function in a set of discrete frequencies, a system of linear equations is derived which has a unique and exact solution for the coefficients of the transfer function provided that the data is noise-free and the degrees of...

متن کامل

High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT.

Characteristics of high-power, narrow-linewidth, continuous-wave (cw) green radiation obtained by simple single-pass second-harmonic-generation (SHG) of a cw ytterbium fiber laser at 1064 nm in the nonlinear crystals of PPKTP and MgO:sPPLT are studied and compared. Temperature tuning and SHG power scaling up to nearly 10 W for input fundamental power levels up to 30 W are performed. Various con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012